Improving long-term survival estimation through flexible models, combining evidence and accessible software

Chris Jackson MRC Biostatistics Unit, Cambridge, U.K.

UCL, 7 July 2015

"Improving long-term survival estimation through

- 1. flexible models
- 2. combining evidence
- 3. accessible software...

... but you can't currently have all three at the same time!"

"Improving long-term survival estimation through

- 1. flexible models
- 2. combining evidence
- 3. accessible software...

... but you can't currently have all three at the same time!"

Premise of the talk

Long-term survival modelling needs

- Sufficient long-term data:
 - individual data with long follow up, or
 - individual data with short follow up + other data on the long-term period
- Models flexible enough to capture the data
- Usable software, skills.

1. Using long-term population data to extrapolate RCT evidence over time (slides 6–21)

(Benaglia, Jackson & Sharples, Stat. Med (2015) 34(5):796-811)

flexible modelling | combining evidence | accessible software

- 2. Flexible parametric survival models for one individual dataset (slides 23–37)
 - ► The flexsurv R package for parametric survival modelling

flexible modelling

accessible software

Part I

Using long-term population data to extrapolate short-term survival data

ICD (Implantable Cardioverter Defibrillators) compared to anti-arrhythmic drugs (AAD) for prevention of sudden cardiac death in people with cardiac arrhythmia.

Data:

- Individual data from cohort of 535 UK cardiac arrhythmia patients implanted with ICDs between 1991 and 2002.
- Meta-analysis of three (non-UK) RCTs (published HRs).
 - Relatively short-term follow-up: approximately 75% people followed for less than 5 years, maximum 10 years

UK population mortality statistics by age, sex, cause of death.
 Estimate the survival curve over the lifetime of ICD and AAD patients in UK

Previous Work: central idea (Demiris & Sharples, Stat. Med. 2006)

Years

Use UK population data with same age/sex distribution to anchor the ICD population risk

Chris Jackson, MRC-BSU Cambridge

Previous Work: central idea (Demiris & Sharples, Stat. Med. 2006)

Years

Use UK population data with same age/sex distribution to anchor the ICD population risk

Previous Work: key assumption

Log–Hazard Function

$h_{ICD}(t) = e^{\beta} h_{UK}(t)$, for t > 0

Constant (multiplicative) hazard ratio between ICD and UK population

This seems a strong assumption:

- 1. ICD patients at greater risk of arrhythmia death
- If proportion of deaths caused by arrhythmia changes over time, then extrapolating constant HR for all causes may be inaccurate

Previous Work: key assumption

Log–Hazard Function

 $h_{ICD}(t) = e^{\beta} h_{UK}(t)$, for t > 0

Constant (multiplicative) hazard ratio between ICD and UK population

This seems a strong assumption:

- 1. ICD patients at greater risk of arrhythmia death
- 2. If proportion of deaths caused by arrhythmia changes over time, then extrapolating constant HR for all causes may be inaccurate

Proportion of UK deaths which are due to arrhythmia

Proportion of Arrhythmic Deaths - UK Population 2002

Extrapolate constant cause-specific instead of all-cause hazard ratio

Simulation study: ignoring cause-specific nature of hazard gives bias in mean survival

- particularly when hazard increases much quicker for other cause
- See paper for full details (Benaglia, Jackson & Sharples, Stat. Med (2015) 34(5):796–811)

Application to ICD example...

Model to extrapolate survival for ICD patients

(not considering AAD control group, RCT data for the moment...)

 General population data: cause of death (k =arrhythmic, non-arrhythmic) known.

Cause-specific survival is Weibull with hazard:

$$h_{UK}^{(k)}(t) = \alpha_k \lambda_k t^{\alpha_k - 1}$$

 ICD cohort: cause of death unknown Overall survival follows a polyhazard model (Louzada-Neto, Biometrics 1999):

$$h_{ICD}(t) = h_{ICD}^{arr}(t) + h_{ICD}^{other}(t)$$

- t: minimum time to one of 2 possible causes of death
- Hazard is the sum of 2 cause-specific hazards

Cause-specific proportional hazards assumption

ICD cohort hazard is related to the general population hazard as:

$$\begin{split} h_{ICD}(t) &= h_{ICD}^{arr}(t) + h_{ICD}^{other}(t) \\ &= e^{\beta} h_{UK}^{arr}(t) + h_{UK}^{other}(t) \\ &= e^{\beta} \alpha_1 \lambda_1 t^{\alpha_1 - 1} + \alpha_2 \lambda_2 t^{\alpha_2 - 1} (\text{poly-Weibull}) \end{split}$$

Arrhythmia hazard is proportional Other-cause hazard is identical to UK matched population.

- Joint Bayesian model for ICD cohort + UK population data
- Estimate joint posterior of parameters α₁, α₂, λ₁, λ₂, β by MCMC (using WinBUGS).
- WBDev add-on needed to implement the poly-Weibull distribution for the cohort data

Express beliefs on an intuitive scale — exact choice may make a difference for small populations Weibull rate λ :

- ► Age around 60 on study entry: cannot survive more than 60 additional years. Mean survival ~ U(0,60).
- I/λ ~ U(0, 100), gives a mean 1/λΓ(1 + 1/α) of < 60, for all plausible α.</p>

Weibull shape α : controls hazard vs. time: $h(t) = \alpha \lambda (\lambda t)^{\alpha - 1}$

- Hazard ratio for doubled time t is $2^{\alpha-1}$.
- ▶ Prior mean of 1.5 for this, with 95% CI about (0.64, 100)
- implies $\log(\alpha) \sim N(0.5, \sigma = 0.78)$

Log HR β between ICD patients and general population: 95% Cl for HR (1/150,150) $\rightarrow \beta \sim N(0, \sigma = 2.5)$

Express beliefs on an intuitive scale — exact choice may make a difference for small populations Weibull rate λ :

- ► Age around 60 on study entry: cannot survive more than 60 additional years. Mean survival ~ U(0,60).
- I/λ ~ U(0, 100), gives a mean 1/λΓ(1 + 1/α) of < 60, for all plausible α.</p>

Weibull shape α : controls hazard vs. time: $h(t) = \alpha \lambda (\lambda t)^{\alpha - 1}$

- Hazard ratio for doubled time t is $2^{\alpha-1}$.
- ▶ Prior mean of 1.5 for this, with 95% CI about (0.64, 100)
- implies $\log(\alpha) \sim N(0.5, \sigma = 0.78)$

Log HR β between ICD patients and general population: 95% CI for HR (1/150,150) $\rightarrow \beta \sim N(0, \sigma = 2.5)$

Express beliefs on an intuitive scale — exact choice may make a difference for small populations Weibull rate λ :

- ► Age around 60 on study entry: cannot survive more than 60 additional years. Mean survival ~ U(0,60).
- I/λ ~ U(0, 100), gives a mean 1/λΓ(1 + 1/α) of < 60, for all plausible α.</p>

Weibull shape α : controls hazard vs. time: $h(t) = \alpha \lambda (\lambda t)^{\alpha - 1}$

- Hazard ratio for doubled time t is $2^{\alpha-1}$.
- ▶ Prior mean of 1.5 for this, with 95% CI about (0.64, 100)
- implies $\log(\alpha) \sim N(0.5, \sigma = 0.78)$

Log HR β between ICD patients and general population: 95% CI for HR (1/150,150) $\rightarrow \beta \sim N(0, \sigma = 2.5)$

Extrapolating real ICD cohort data

- Ignore the cause-specific hazard (Weibull) or account for it (poly-Weibull)
- More bias for women when ignoring it
 - due to time-varying proportion of deaths due to arrhythmia.

Proportion of UK deaths which are due to arrhythmia

Proportion of Arrhythmic Deaths - UK Population 2002

Chris Jackson, MRC-BSU Cambridge

Including an intervention effect from literature

Hazards for three groups under Poly-Weibull model:

$$\begin{array}{lll} h_{\rm UK}(t) &=& h_{\rm UK}^{arr}(t) + h_{\rm UK}^{other}(t) \\ h_{\rm ICD}(t) &=& e^{\beta} h_{\rm UK}^{arr}(t) + h_{\rm UK}^{other}(t) \\ h_{\rm AAD}(t) &=& e^{\gamma_a + \beta} h_{\rm UK}^{arr}(t) + h_{\rm UK}^{other}(t), \end{array}$$

Meta-analysis of ICD vs AAD trials, published HR for arrhythmia mortality, gives a prior for γ_a .

For the (probably biased) Weibull model we have:

$$\begin{split} h_{\rm UK}(t) &= \mu_1 \alpha t^{\alpha-1} = e^{\beta_0} \alpha t^{\alpha-1} \\ h_{\rm ICD}(t) &= e^{\beta_1} h_{\rm UK}(t) = e^{\beta_0+\beta_1} \alpha t^{\alpha-1} \\ h_{\rm AAD}(t) &= e^{\gamma} h_{\rm ICD}(t) = e^{\beta_0+\beta_1+\gamma} \alpha t^{\alpha-1}, \end{split}$$

Prior for γ from published meta-analysis HR for all-cause mortality. Outcome of interest \rightarrow life years gained (LYG) by ICDs vs AADs.

Chris Jackson, MRC-BSU Cambridge

Improving long-term survival estimation

Including an intervention effect from literature

Hazards for three groups under Poly-Weibull model:

$$\begin{array}{lll} h_{\rm UK}(t) &=& h_{\rm UK}^{arr}(t) + h_{\rm UK}^{other}(t) \\ h_{\rm ICD}(t) &=& e^{\beta} h_{\rm UK}^{arr}(t) + h_{\rm UK}^{other}(t) \\ h_{\rm AAD}(t) &=& e^{\gamma_a + \beta} h_{\rm UK}^{arr}(t) + h_{\rm UK}^{other}(t), \end{array}$$

Meta-analysis of ICD vs AAD trials, published HR for arrhythmia mortality, gives a prior for γ_a .

For the (probably biased) Weibull model we have:

$$\begin{split} h_{\rm UK}(t) &= \mu_1 \alpha t^{\alpha-1} = e^{\beta_0} \alpha t^{\alpha-1} \\ h_{\rm ICD}(t) &= e^{\beta_1} h_{\rm UK}(t) = e^{\beta_0+\beta_1} \alpha t^{\alpha-1} \\ h_{\rm AAD}(t) &= e^{\gamma} h_{\rm ICD}(t) = e^{\beta_0+\beta_1+\gamma} \alpha t^{\alpha-1}, \end{split}$$

Prior for γ from published meta-analysis HR for all-cause mortality. Outcome of interest \rightarrow life years gained (LYG) by ICDs vs AADs.

- ICD cohort extrapolated using population data
- AAD survival generated with aid of meta-analysis.
- Life-years gained from ICD appears biased if use Weibull

Extrapolating incremental survival between interventions

- ICD cohort extrapolated using population data
- AAD survival generated with aid of meta-analysis.
- Life-years gained from ICD appears biased if use Weibull
- Slightly more apparent bias for women

Life-years gained from ICD	Weibull	Poly-Weibull	
Overall	1.82 (0.49)	3.12 (0.61)	
Women	1.89 (0.62)	3.11 (0.76)	Still bias for men
Men	1.73 (0.47)	2.91 (0.58)	

Chris Jackson, MRC-BSU Cambridge

Proportion of UK deaths which are due to arrhythmia

Proportion of Arrhythmic Deaths - UK Population 2002

Chris Jackson, MRC-BSU Cambridge

Causes of death may be recorded inconsistently between

- meta-analysis of ICD vs drug trials "HR for arrhythmia deaths"
- population mortality data

Sensitivity analysis — assume 10%-20%

"arrhythmia"/"non-arrhythmia" deaths are misclassified.

- e.g. if fewer deaths actually affected by treatment, expected survival gains from treatment lower
- Still doesn't explain the discrepancy between models for men.

Causes of death may be recorded inconsistently between

- meta-analysis of ICD vs drug trials "HR for arrhythmia deaths"
- population mortality data

Sensitivity analysis — assume 10%-20%

"arrhythmia"/"non-arrhythmia" deaths are misclassified.

- e.g. if fewer deaths actually affected by treatment, expected survival gains from treatment lower
- Still doesn't explain the discrepancy between models for men.

We assumed ICD patients had

arrhythmia hazard proportional(=greater) other-cause hazard identical $\}$ to general population.

- What if ICD patients at greater risk from some other causes (other heart disease), as well as arrhythmia?
- May have led to biases in survival (underestimation of AAD-specific survival in poly-Weibull model...reasoning for this in paper)

- Bayesian models useful for combining short-term RCT / cohort and longer-term survival data.
- Ignoring cause-specific hazard, thus misspecifying the underlying model, introduces bias in survival estimates.
 - may underestimate or overestimate overall survival.
- Bias can be alleviated by modelling cause-specific hazards
 - but requires cause-specific survival data / treatment effects
 - and information about which causes will be affected by disease status and / or treatment
- Bias for treatment comparisons may be less if bias acts in the same way in all treatment groups.
- Sensitivity analysis to model / data assumptions important
- Requires model-specific BUGS code...

- Bayesian models useful for combining short-term RCT / cohort and longer-term survival data.
- Ignoring cause-specific hazard, thus misspecifying the underlying model, introduces bias in survival estimates.
 - may underestimate or overestimate overall survival.
- Bias can be alleviated by modelling cause-specific hazards
 - but requires cause-specific survival data / treatment effects
 - and information about which causes will be affected by disease status and / or treatment
- Bias for treatment comparisons may be less if bias acts in the same way in all treatment groups.
- Sensitivity analysis to model / data assumptions important
- Requires model-specific BUGS code...

- Bayesian models useful for combining short-term RCT / cohort and longer-term survival data.
- Ignoring cause-specific hazard, thus misspecifying the underlying model, introduces bias in survival estimates.
 - may underestimate or overestimate overall survival.
- Bias can be alleviated by modelling cause-specific hazards
 - but requires cause-specific survival data / treatment effects
 - and information about which causes will be affected by disease status and / or treatment
- Bias for treatment comparisons may be less if bias acts in the same way in all treatment groups.
- Sensitivity analysis to model / data assumptions important
- ▶ Requires model-specific BUGS code...

- Bayesian models useful for combining short-term RCT / cohort and longer-term survival data.
- Ignoring cause-specific hazard, thus misspecifying the underlying model, introduces bias in survival estimates.
 - may underestimate or overestimate overall survival.
- Bias can be alleviated by modelling cause-specific hazards
 - but requires cause-specific survival data / treatment effects
 - and information about which causes will be affected by disease status and / or treatment
- Bias for treatment comparisons may be less if bias acts in the same way in all treatment groups.
- Sensitivity analysis to model / data assumptions important
- ▶ Requires model-specific BUGS code...

- Bayesian models useful for combining short-term RCT / cohort and longer-term survival data.
- Ignoring cause-specific hazard, thus misspecifying the underlying model, introduces bias in survival estimates.
 - may underestimate or overestimate overall survival.
- Bias can be alleviated by modelling cause-specific hazards
 - but requires cause-specific survival data / treatment effects
 - and information about which causes will be affected by disease status and / or treatment
- Bias for treatment comparisons may be less if bias acts in the same way in all treatment groups.
- Sensitivity analysis to model / data assumptions important
- Requires model-specific BUGS code...

Part II

Flexible parametric survival models and software

- 2-parameter Weibull model judged adequate in ICD application — but this is not always the case.
- 3-4 parameter models (generalised gamma / F) (see e.g. Jackson et al Int J Biostat) sometimes better

More flexible is a spline-based model (Royston & Parmar, Stat. Med. 2002)

- can model both baseline hazard and non-proportional hazards between groups with any number of parameters
 - can fit as well as needed
- can be implemented in Stata (stpm2) and R (flexsurv)

Spline survival model

Log cumulative hazard (log(-log survival))

 Weibull: linear function of log time t

Spline: piecewise cubic function of log(t)

 Pieces separated by knots to span the data

0 knots: Weibull

n knots: *n* + 2 parameters

(German breast cancer data, see Sauerbrei & Royston,

J.Roy.Stat.Soc A 1999)

 Weibull: linear function of log time t

Spline: piecewise cubic function of log(t)

- Pieces separated by knots to span the data
- 0 knots: Weibull
- *n* knots: n + 2 parameters

(German breast cancer data, see Sauerbrei & Royston,

Log cumulative hazard (log(-log survival))

 Weibull: linear function of log time t

Spline: piecewise cubic function of log(t)

- Pieces separated by knots to span the data
- 0 knots: Weibull
- *n* knots: n + 2 parameters

(German breast cancer data, see Sauerbrei & Royston,

Log cumulative hazard (log(-log survival))

 Weibull: linear function of log time t

Spline: piecewise cubic function of log(t)

- Pieces separated by knots to span the data
- 0 knots: Weibull
- *n* knots: n + 2 parameters

(German breast cancer data, see Sauerbrei & Royston,

(German breast cancer data, see Sauerbrei & Royston,

(German breast cancer data, see Sauerbrei & Royston,

J.Roy.Stat.Soc A 1999)

Log cumulative hazard (log(-log survival))
Weibull: linear function of log time t

Spline: piecewise cubic function of log(t)

 Pieces separated by knots to span the data

0 knots: Weibull

(German breast cancer data, see Sauerbrei & Royston,

J.Roy.Stat.Soc A 1999)

of log time t

Spline: piecewise cubic function of log(t)

 Pieces separated by knots to span the data

0 knots: Weibull

(German breast cancer data, see Sauerbrei & Royston,

J.Roy.Stat.Soc A 1999)

Log cumulative hazard (log(-log survival))

 Weibull: linear function of log time t

Spline: piecewise cubic function of log(t)

 Pieces separated by knots to span the data

0 knots: Weibull

(German breast cancer data, see Sauerbrei & Royston,

J.Roy.Stat.Soc A 1999)

Log cumulative hazard (log(-log survival))

 Weibull: linear function of log time t

Spline: piecewise cubic function of log(t)

 Pieces separated by knots to span the data

0 knots: Weibull

Log cumulative hazard in terms of x = log(t), parameters γ

$$log(-log(S(x, \gamma))) = \gamma_0 + \gamma_1 x$$

for Weibull

Log cumulative hazard in terms of x = log(t), parameters γ $log(-log(S(x, \gamma))) = \gamma_0 + \gamma_1 x + \gamma_2 v_1(x) + \ldots + \gamma_{m+1} v_m(x)$

for spline with *m* knots. $v_j(x)$ is *j*th *basis* function

Log cumulative hazard in terms of x = log(t), parameters γ

$$log(-log(S(x,\gamma))) = \gamma_0 + \gamma_1 x + \gamma_2 v_1(x) + \ldots + \gamma_{m+1} v_m(x)$$

for spline with *m* knots. $v_j(x)$ is *j*th *basis* function

$$\begin{aligned} v_j(x) &= (x - k_j)_+^3 - \lambda_j (x - k_{min})_+^3 - (1 - \lambda_j) (x - k_{max})_+^3, \qquad \lambda_j = \frac{k_{max} - k_j}{k_{max} - k_{min}} \\ \text{and } (x - a)_+ &= max(0, x - a). \\ \text{a cubic specially constructed to give a smooth function at the knots} \end{aligned}$$

 k_{min}, \ldots, k_{max}

Log cumulative hazard defined by

$$log(-log(S(x,\gamma))) = \gamma_0 + \gamma_1 x + \gamma_2 v_1(x) + \ldots + \gamma_{m+1} v_m(x)$$

Covariates ${\bf z}$ can be placed on any parameter γ

- $\gamma_0 = \boldsymbol{\beta}^\top \mathbf{z}$ gives a proportional hazards model
 - Sufficiently flexible splines give similar answers to Cox models
- Modelling any other γ_r as linear in z gives non-proportional hazards:
 - hazard ratio can be an arbitrarily flexible function of time

Hazard ratios (vs. Good)					
under proportional					
hazards:					
Medium	vs good prognosis				
Weibull	2.33 (1.67, 3.26)				
Cox	2.32 (1.66, 3.24)				
Poor vs good prognosis					
Weibull	5.33 (3.86, 7.35)				
Cox	5.04 (3.65, 6.96)				

Hazard ratios (vs. Good) under proportional hazards:					
Medium vs good prognosis					
Weibull	2.33 (1.67, 3.26)				
Cox	2.32 (1.66, 3.24)				
Spline	2.31 (1.65, 3.23)				
Poor vs good prognosis					
Weibull	5.33 (3.86, 7.35)				
Cox	5.04 (3.65, 6.96)				
Spline	5.02 (3.64, 6.93)				

Log cumulative hazard defined by

 $log(-log(S(x,\gamma))) = \gamma_0 + \gamma_1 x + \gamma_2 v_1(x) + \ldots + \gamma_{m+1} v_m(x)$

Covariates ${\bf z}$ can be placed on any parameter γ

- $\gamma_0 = \boldsymbol{\beta}^\top \mathbf{z}$ gives a proportional hazards model
 - Sufficiently flexible splines give similar answers to Cox models
- Modelling any other γ_r as linear in z gives non-proportional hazards:
 - hazard ratio can be an arbitrarily flexible function of time

- improves short-term fit
- changes extrapolation

- improves short-term fit
- changes extrapolation

Interconnected issues:

- Hard to combine with evidence synthesis...
-No easy Bayesian implementation (tricky in BUGS)....
- ... Priors for / interpretation of spline coefficients γ .

flexsurv R package

flexsurv (Jackson, CRAN (2011-2015))

- Fit any parametric survival model to individual data by maximum likelihood
 - right/interval censoring, left-truncation, multi-state models
- Standard models built in, plus spline, generalized gamma/F
- Can program your own novel parametric distributions, given the hazard or probability density function
- Any parameter of any distribution can depend on covariates
 - proportional hazards / accelerated failure time typical, but not necessary
- Customisable outputs / summary presentation

Similar Stata packages

- stpm2 (Royston & Lambert) for spline model
- stgenreg (Crowther & Lambert) for user-defined parametric survival models

flexsurv R package

flexsurv (Jackson, CRAN (2011-2015))

- Fit any parametric survival model to individual data by maximum likelihood
 - right/interval censoring, left-truncation, multi-state models
- Standard models built in, plus spline, generalized gamma/F
- Can program your own novel parametric distributions, given the hazard or probability density function
- Any parameter of any distribution can depend on covariates
 - proportional hazards / accelerated failure time typical, but not necessary
- Customisable outputs / summary presentation

Similar Stata packages

- stpm2 (Royston & Lambert) for spline model
- stgenreg (Crowther & Lambert) for user-defined parametric survival models

Fitting models, and default output

Generalized gamma 3-parameter model. Two out of the three parameters depend on a covariate (prognostic group) fs2 <- flexsurvreg(Surv(recyrs, censrec) ~ group + sigma(group),

```
fs2 <- flexsurvreg(Surv(recyrs, censrec) group + sigma(group),
data=bc, dist="gengamma")
```

fs2

```
Call:
flexsurvreg(formula = Surv(recyrs, censrec) ~ group + sigma(group),
data = bc, dist = "gengamma")
```

Estimates:

Q				

```
N = 686, Events: 299, Censored: 387
Total time at risk: 2113.425
Log-likelihood = -786.2172, df = 7
AIC = 1586.434
```

Fitting models, and default output

Generalized gamma 3-parameter model. Two out of the three parameters depend on a covariate (prognostic group) fs2 <= flowgururog(Suru(rocurs, constroc), ~ group + sigma(group)

fs2

```
Call:
flexsurvreg(formula = Surv(recyrs, censrec) ~ group + sigma(group),
data = bc, dist = "gengamma")
```

Estimates:

	data mean	est	L95%	U95%	se	exp(est)	L95%	U95%
mu	NA	1.9840	1.6822	2.2859	0.1540	NA	NA	NA
sigma	NA	1.1765	0.9392	1.4738	0.1352	NA	NA	NA
Q ¯	NA	-0.7074	-1.1795	-0.2353	0.2409	NA	NA	NA
groupMedium	0.3338	-0.7105	-1.0346	-0.3863	0.1654	0.4914	0.3554	0.6795
groupPoor	0.3324	-1.4043	-1.7102	-1.0983	0.1561	0.2455	0.1808	0.3334
sigma(groupMedium)	0.3338	-0.0494	-0.3105	0.2118	0.1332	0.9518	0.7331	1.2358
sigma(groupPoor)	0.3324	-0.1768	-0.4293	0.0757	0.1288	0.8380	0.6510	1.0787

```
N = 686, Events: 299, Censored: 387
Total time at risk: 2113.425
Log-likelihood = -786.2172, df = 7
AIC = 1586.434
```

Fitting models, plot output

Chris Jackson, MRC-BSU Cambridge

Summarise user-defined functions of the parameters

e.g. restricted mean survival for a model with parameters lpha

$$E(T|T < t, \alpha) = \int_0^t S(u|\alpha) du$$

group=Good time est lcl ucl 1 1 7.36671 6.725084 7.85355

Summarise user-defined functions of the parameters

e.g. restricted mean survival for a model with parameters lpha

$$E(T|T < t, \alpha) = \int_0^t S(u|\alpha) du$$


```
mean.gengamma <- function(mu, sigma, Q,</pre>
                           horizon=10, ...){
    surv <- function(t, ...) {</pre>
         1 - pgengamma(q=t, mu=mu,
                        sigma=sigma, Q=Q, ...)
    }
    integrate(surv, 0, horizon, ...)$value
}
summary(fs2, newdata=list(group="Good"),
        t=1, fn=mean.gengamma)
group=Good
  time
           est
                    lcl
                              ucl
1
     1 7.36671 6.725084 7.85355
```

- Similar facility for people to fit their own parametric models
 - given definitions of the hazard or probability density as R functions
- User guide and Supplementary examples manuals give lots of worked examples
 - User guide to be published in Journal of Statistical Software
- Suggestions for additions welcome
 - ideally build a user-contributed library of examples

- Restricted to parametric modelling of one individual-level dataset
- No random effects / frailty, though could be extended in theory

For synthesis of multiple related datasets, Bayesian probabilistic modelling languages (BUGS / JAGS / Stan) preferred

though higher barrier to entry at the moment

Modelling long term survival may need

- a combination of data sources...
 - but modelling/software tools are tricky
 - can be hard work to assess assumptions
- flexible models ...
 - hard to combine with synthesis of multiple datasets
- accessible software

Modelling long term survival may need

- a combination of data sources...
 - but modelling/software tools are tricky
 - can be hard work to assess assumptions
- flexible models ...
 - hard to combine with synthesis of multiple datasets
- accessible software

Modelling long term survival may need

- a combination of data sources...
 - but modelling/software tools are tricky
 - can be hard work to assess assumptions
- flexible models ...
 - hard to combine with synthesis of multiple datasets
- accessible software