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Causal inference in regression-discontinuity (RD) designs

The RD design is a quasi-experimental design where the
treatment status changes discontinuously according to some
underlying variable (forcing variable)

Extracting causal information from RD designs is challenging

Several methods for selecting suitable subpopulations for causal
inference have been developed in the literature depending on the
underlying assumptions (e.g., Imbens and Kalyanaraman, 2012; Calonico
et al., 2014, 2016; Cattaneo et al. 2015; Keele et al. 2015, Li et al., 2015)

Purpose: Drawing causal inference from RD designs for
subpopulations of units for which the RD design defines a local
randomized experiment



Regression discontinuity designs

Two general setups: Sharp and Fuzzy RD designs

In sharp RD designs:

X Treatment assignment (eligibility) and treatment
received are completely confounded

X Treatment assignment and treatment status are
deterministic step function of the forcing variable

In fuzzy RD designs: Forcing variable

A
ss

ig
nm

en
t P

ro
ba

bi
lit

ie
s

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

s0

X Treatment assignment (eligibility) still depends
deterministically on the forcing variable, but

X Treatment receipt does not coincide with treatment
assignment

Forcing variable
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RD designs are often exploited to identify causal effects of interventions

Basic idea: Compare units with very similar values for the forcing
variable, but different levels of treatment



Traditional approaches to the analysis of RD designs

Traditionally, RD designs are viewed as quasi-experimental designs
with a non-probabilistic assignment mechanism

The forcing variable is viewed as a pretreatment covariate

Smoothness assumptions for the relationship between the
potential outcomes and the forcing variable

Focus on local causal effects at the threshold

X A jump at the threshold, s0, is interpreted as causal effect

(e.g., Thistlethwaite and Campbell, 1960; Imbens and Lemieux, 2008; Lee
and Lemieux, 2010)



RD designs as local randomized experiments

RD designs as local randomized experiments in a neighbourhood
of the threshold (e.g., Cattaneo et al., 2015; Li, Mattei and Mealli,
2015; Sales and Hansen, 2015; Mattei and Mealli, 2016)

Probabilistic formulation of the assignment mechanism
underlying RD designs within the potential outcome approach (Li,
Mattei and Mealli, 2015; Mattei and Mealli, 2016)

X The forcing variable is viewed as a random variable

X Local randomization: there exists at least a subpopulation,
Us0 , around the threshold where the forcing variable, and
therefore the treatment/eligibility status, can be seen as
randomly assigned

X Focus on local causal effects for units in Us0



Our contribution

Following Li, Mattei and Mealli (2015), we use a probabilistic
formulation of the assignment mechanism underlying RD designs
within the potential outcome approach, proposing to

Goal 1: Select suitable subpopulations around the cutoff point,
Us0 , using a model-based finite mixture approach to clustering in
a Bayesian framework

Goal 2: Conduct exact Bayesian causal inference properly
accounting for the uncertainty about the subpopulations, Us0



Motivating Study: The Brazil’s Bolsa Familía (BF) Program

Bolsa Família is a social welfare program of the Brazilian
government, that started in 2003 and it is still ongoing

Objective: Reducing short-term poverty by direct cash transfers
and fighting long-term poverty by increasing human capital
among poor Brazilian people through conditional cash transfers

X Benefits are paid over time only to beneficiaries that comply
with health and education conditionalities

Causal question: Assessing causal effects of the Bolsa Familía
program on leprosy



The BF study: A (fuzzy) RD design

BF benefit allocation rule: A family must (1) meet eligibility
criteria; and (2) apply for the Bolsa Família benefits

X Focus on families who applied for Bolsa Família benefits

Eligibility: Per capita household income (forcing variable) falling
below or above a pre-fixed threshold (120 Brazil Real ' 36.5
USD per month)

Eligible families who applied for BF benefits may not receive BF
benefits due to budget constraints

The Bolsa Família study defines a fuzzy RD design: Eligibility for
BF benefits does not correspond with the receipt of BF benefits

X Focus on intention-to-treat effects of eligibility statuses, not
of the receipt of BF benefits

X Intention-to-treat effects may be interesting for policy
purposes



The potential outcome approach to causal inference
(Rubin, 1974, 1978)

i = Unit/Family (i = 1, . . . ,N)

Xi = Vector of covariates
Zi = BF benefit eligibility status:

Zi = z ∈ {0,1} = {Ineligible,Eligible}

Si = Per capita household income: The forcing variable

Zi = 1{Si ≤ s0} s0 = 120 Brazil Real (threshold)

Yi(s) = Potential outcomes for the indicator of the presence of at
least a leprosy case (after 2009) given the vector of values of the
forcing variable, s ≡ (s1, . . . , sN)

′

Yi(s) =
{

1 If there is at least a leprosy case in family i given s
0 If there is no leprosy case in family i given s



Local overlap, local RD-SUTVA and local estimands

Assumption 1. Local Overlap. There exists a subset of units,
Us0 , such that for each i ∈ Us0 , Pr(Si ≤ s0) > ε and
Pr(Si > s0) > ε for some sufficiently large ε > 0

Assumption 2. Local RD-SUTVA. For each i ∈ Us0 , consider two
eligibility statuses z

′

i = 1(s′i ≤ s0) and z
′′

i = 1(z
′′

i ≤ s0), with
possibly s

′

i 6= s
′′

i . If z
′

i = z
′′

i then Yi(s
′
) = Yi(s

′′
)

X Under Local RD-SUTVA for each i ∈ Us0 , there are only two
potential outcomes for the indicator of the presence of at
least a leprosy case: Yi(0) and Yi(1)

Causal Estimand. Local relative risk

RRUs0
≡ Pr {Yi(1) = 1; i ∈ Us0}

Pr {Yi(0) = 1; i ∈ Us0}



Probabilistic treatment assignment mechanism for RD designs

Assumption 3. Local Randomization (LR). For each i ∈ Us0 ,

Pr (Si | Yi(0),Yi(1),Xi) = Pr (Si)

X Under local randomization, for each i ∈ Us0 ,

Pr(Zi = 1) = Pr(Si ≤ s0)

Assumption 3’. Local Unconfoundedness (LU).
For each i ∈ Us0 ,

Pr (Si | Yi(0),Yi(1),Xi) = Pr (Si | Xi)

X Under local unconfoundedness, for each i ∈ Us0 ,

Pr(Zi = 1 | Xi) = Pr(Si ≤ s0 | Xi)



Selection of subpopulations Us0: State of the art
Local randomization based methods (Cattaneo et al., 2015; Li, Mattei,
Mealli, 2015; Licari, 2016)

X Assume LR and select subpopulations where pre-treatment
variables are well balanced in the two subsamples defined by the
assignment

X Randomization or model-based Bayesian tests, possibly with
adjustment for multiplicities

× These methods usually rely on assumptions on the shape of the
subpopulations and are not immediately applicable when LU rather
than LR is assumed

Local unconfoundedness based methods

X Assume LU and construct a subpopulation conditioning on
observables and the discontinuity using penalized matching
methods (Keele et al., 2015)

× The selected subpopulation depends on the penalty on the forcing
variable distance between treated and control units

LR and LU based methods do not directly account for the uncertainty
about a selected subpopulation



Selection of subpopulations Us0: Our proposal
The problem of selecting suitable subpopulations, Us0 , as a clustering
problem

Sample units in a RD study come from (at least) three subpopulations:

U−s0 = {i /∈ Us0 : Si < s0} Us0 = {i : Si ∈ Is0} U+
s0 = {i /∈ Us0 : Si > s0}

where Is0 is a neighborhood around s0

Crucial issue: We have some information on each subpopulation but we
do not know which subpopulation each unit belongs to

What do we know about the three subpopulations?

X Each unit belongs to only one of the 3 subpopulations
X For units who belong to Us0 the RD assumptions hold
X For units who belong to either U−s0

or U+
s0 some RD assumptions

may fail to hold

Idea: Use clustering methods to ascertain, on the basis of the
information we have, which subpopulation each unit belongs to

X How can we include this information in the clustering algorithm?



Selection of subpopulations Us0: A finite mixture model approach

A finite mixture model-based approach (e.g., McLachlan and Basford,
1988; Titterington, Smith, and Markov, 1985)

p (Si ,Yi (s) | Xi ;θ) =

πi (U−s0 ) p(Si | Xi ; i ∈ U−s0 ;η−) p(Yi (s) | Si ,Xi ; i ∈ U−s0 ;γ−) +

πi (Us0 ) p(Si | Xi , i ∈ Us0 ;η) p(Yi (0),Yi (1) | Xi , i ∈ Us0 ;γ) +

πi (U+
s0 ) p(Si | Xi , i ∈ U+

s0 ;η+) p(Yi (s) | Si ,Xi , i ∈ U+
s0 ;γ+)

where πi (U−s0
)=Pr(i ∈ U−s0

| Xi ;α)≥0, πi (Us0 )=Pr(i ∈ Us0 | Xi ;α) ≥ 0,
and πi (U+

s0 ) = Pr(i ∈ U+
s0 | Xi ;α) ≥ 0 are the mixing probabilities, with

πi (U−s0 ) + πi (Us0 ) + πi (U+
s0 ) = 1,

(η−,γ−), (η,γ) and (η+,γ+) are parameter vectors defining each
mixture component, and θ =

(
α,η−,γ−,η,γ,η+,γ+

)
is the complete

set of parameters specifying the mixture

Bayesian approach to inference: Posterior computation via a Gibbs
sampler with data augmentation (to impute missing subpopulation
membership for each unit) (e.g., Diebolt and Robert, 1994; Green and
Richardson, 1997)



BF study: Mixture-model specification
Model for the mixing probabilities: conditional probit

πi (U−s0
) = Pr(G∗i (−) ≤ 0) πi (U+

s0 ) = Pr(G∗i (−) > 0 and G∗i (+) ≤ 0)

πi (Us0 ) = 1− πi (U−s0
)− πi (U+

s0 )

where G∗i (−) = α−0 + X′iα
− + ε−i and G∗i (+) = α+

0 + X′iα
+ + ε+i , with

ε−i ∼ N(0, 1) and ε+i ∼ N(0, 1), independently

Models for the forcing variable (per capita household income):
Log-normal models

log(Si ) | Xi , i ∈ U−s0 ∼ N
(
β−0 + X′iβ

−;σ2
−

)
log(Si ) | Xi , i ∈ U+

s0 ∼ N
(
β+

0 + X′iβ
+;σ2

+

)
log(Si ) | Xi , i ∈ Us0 ∼ N

(
β0 + X′iβ;σ2

)
Models for the outcome (probit link):

Pr(Yi (s) = 1|Si = s,Xi , i ∈ U−s0 ) = Φ
(
γ−0 + log(s)γ−1 + X′iγ

−)
Pr(Yi (s) = 1|Si = s,Xi , i ∈ U+

s0 ) = Φ
(
γ+

0 + log(s)γ+
1 + X′iγ

+)
Pr(Yi (z) = 1|Xi , i ∈ Us0 ) = Φ

(
γ0,z + X′iγ

)
z = 0, 1



BF study: Bayesian inference

We assume that parameters are a priori independent

We use weakly informative priors

X Multivariate normal priors for the coefficients
X Scaled inverse-χ2 priors for the variances

Finite sample estimands

MCMC algorithm: For ` = 1 . . . , L

X Impute missing subpopulation membership for each unit using a
data augmentation step

X Update the model parameters using Gibbs sampling
X For each unit i in Us0 , draw the missing potential outcome,

Y mis
i = ZiYi (0) + (1− Zi )Yi (1) from its posterior predictive

distribution and calculate

RR`
Us0

=

∑
i:i∈Us0

[ZiY obs
i + (1− Zi )Y `

i (1)]
/

N`
Us0∑

i:i∈Us0
[(1− Zi )Y obs

i + ZiY `
i (0)]

/
N`
Us0

where Y obs
i = ZiYi (1) + (1− Zi )Yi (0) and N`

Us0
is the number of

units in Us0



Posterior distributions of the mixing probabilities

Estimand Median 2.5% 97.5%

π(U−s0 ) 0.417 0.414 0.419

π(U+
s0
) 0.076 0.076 0.077

π(Us0) 0.507 0.504 0.510

NUs0
77 368 76 933 77 795∑

i∈Us0
(1− Zi) 2 724 2 647 2 804∑

i∈Us0
Zi 74 644 74 231 75 041

No assumption on the shape of the subpopulations
Units with similar realized values of the forcing variable may
belong to different subpopulations



Posterior distribution of RRUs0
(finite sample causal effect)

0 1 2 3

Posterior Median = 0.769

2.5% 5% 95% 97.5%
0.769 0.406 1.860 2.304

Pr(RRUs0
< 1) = 0.723



Concluding Remarks

Crucial features of the model-based Bayesian mixture approach to the
selection of subpopulations, Us0 , in RD designs

X It explicitly accounts for the uncertainty about Us0 membership
X It imposes no constraint on the shape of Us0

We propose a model-based approach to causal inference, combining
the selection of Us0 and the inference on the local causal effects of
interest for units belonging to Us0 in a unique Bayesian framework

Alternative approaches to causal inference, using the model-based
mixture approach just as a tool to select suitable subpopulations

X Multiple impute sub-population membership creating a set of
complete membership datasets

X For each complete membership dataset, use units belonging to Us0

to draw inference on the causal effects of interest using a proper
mode of causal inference

X Combine the complete-data inferences on the local causal effects
to form one inference that properly reflects missing
Us0 -membership uncertainty (and possibly sampling variability)

Extension to fuzzy RD designs
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