

Beware of risk aversion! The role of Probabilistic Sensitivity Analysis in health economic evaluation

Gianluca Baio

University College London Department of Statistical Science

gianluca@stats.ucl.ac.uk

NICE and the cost-effectiveness threshold: Can good intentions compensate for bad practice?

University College London, Monday 15 December 2014

Outline of presentation

Health economic evaluation & PSA

- General structure
- Monetary net benefit
- The nature of PSA

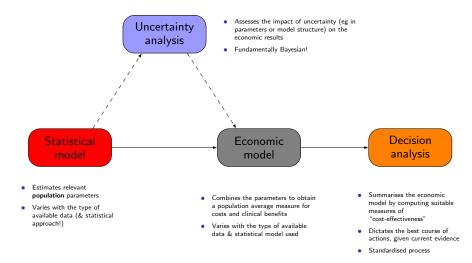
2 Risk aversion

- Why?
- How?
- So what?

S Conclusions(?)

- Potential & limitations
- Open questions

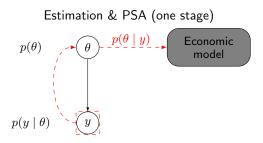
Health economic evaluations



Uncertainty analysis — Frequentist vs Bayesian approach

2. PSA

1. Estimation (base-case)



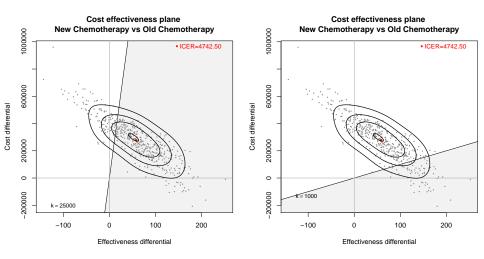
Choosing a utility function

• Typically, we do health economic evaluation based on the monetary net benefit

u(e,c;t) := ke - c

- k is the "willingness to pay", i.e. the cost per extra unit of effectiveness gained
 today's star!
- The main advantages of using the MNB are that
 - It has a fixed form, once $\boldsymbol{e},\boldsymbol{c}$ are observed
 - It is a linear function in e, c, which simplifies computations
- However, MNB presupposes that the DM is *risk neutral*
 - Of course, that's not necessarily true
 - However, it implies that, given current uncertainty, the DM only requires 50% chance that a treatment is cost effective to deem it so!

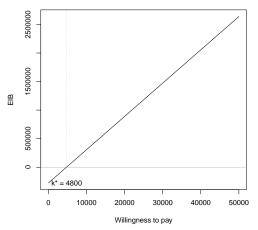
Cost-effectiveness plane vs ICER



$$\mathsf{ICER} = \frac{\mathsf{E}[\Delta_c]}{\mathsf{E}[\Delta_e]}$$

EIB vs ICER

Expected Incremental Benefit



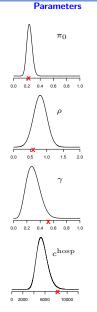
Assuming the MNB as utility:

- $\mathsf{EIB} = \mathcal{U}^1 \mathcal{U}^0 = \mathsf{E}[k\Delta_e \Delta_c] = k\mathsf{E}[\Delta_e] \mathsf{E}[\Delta_c]$ Thus $\mathsf{EIB} > 0 \Rightarrow k > \frac{\mathsf{E}[\Delta_c]}{\mathsf{E}[\Delta_e]} = \mathsf{ICER} = \mathsf{Break}$ even point

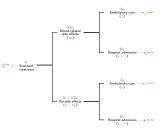
PSA to parameter uncertainty

 \Rightarrow

Decision analysis

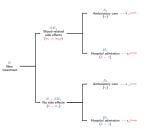


Model structure Old chemotherapy



Old chemotherapy					
Benefits	Costs 670 382.1 871 273.3				
741					
699					
726	425 822.2				
716.2	790 381.2				

New chemotherapy



New ch	New chemotherapy					
Benefits	Costs					
732	1 131 978 1 325 654					
664						
811	766 411.4 1 066 849.8					
774.5						

 \Rightarrow

 $ICER = \frac{276\,468.6}{58.3} = 4\,742.5$

Gianluca Baio (UCL)

PSA to parameter uncertainty

	Parameters simulations			Expected		Incremental	
lter/n	t = 0		t = 1		utility		benefit
	Benefits	Costs	Benefits	Costs	$U(\boldsymbol{\theta}^0)$	$U(\theta^1)$	$IB(\theta)$
1	741	670 382.1	732	1 131 978.0	19 214 751	19 647 706	432 955.8
2	699	871 273.3	664	1 325 654.0	17 165 526	17 163 407	-2 119.3
3	774	639 071.7	706	1 191 567.2	18710928	16 458 433	-2 252 495.5
4	721	1 033 679.2	792	1 302 352.2	16 991 321	18 497 648	1 506 327.0
5	808	427 101.8	784	937 671.1	19 772 898	18 662 329	-1 110 569.3
6	731	1 168 864.4	811	717 939.2	17 106 136	18 983 331	1 877 195.1
1000	726	425 822.2	811	766 411.4	18 043 921	16 470 805	-1 573 116.0
					$\mathcal{U}^0 {=} 18659238$	$\mathcal{U}^1 = 19515004$	EIB= 855766

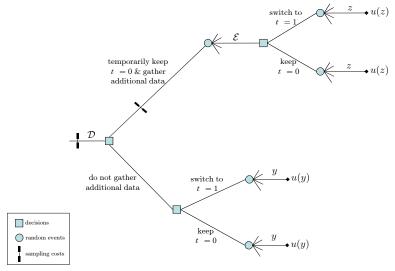
Effectively, PSA is based on the comparison between

- The *ideal* decision process with uncertainty "resolved":
 - $$\begin{split} U(\boldsymbol{\theta}^t) &= k \text{Benefits} \text{Cost} & (\text{under treatment } t) \\ &= \int u(e,c;t) p(e,c \mid \boldsymbol{\theta}^t) dedc & (\text{expected utility given parameters}) \end{split}$$
- The *actual* decision process marginalising out all uncertainties:

 $U^t = k \mathsf{E}[\mathsf{Benefits}] - \mathsf{E}[\mathsf{Costs}]$ (under treatment t)

 $= \int U(\boldsymbol{\theta}^t) p(\boldsymbol{\theta}^t \mid e, c) d\boldsymbol{\theta}^t \qquad \text{(overall expected utility)}$

A two-stage decision process



- Some times the two steps are actually conflated
 - Particularly, given large uncertainty (eg small CEAC), the process is just stopped and marketing authorisation/reimbursement is denied
- Intuitively, this is related to the perceived level of riskiness of a given decision
 - For example, it may be implicitly felt that allowing a treatment with only 65% of cost-effectiveness on the market may be a bad decision
- But:
 - **1** The CEAC is only telling one side of the story how likely is it that the future will turn out very different than the ICER?
 - If PSA makes sense in the two-stage decision process (and I think it does!), then the EVP(P)I is a better tool — also tells about the pay-offs of uncertainty
 - In any case, if riskiness is such a big deal, then the MNB is probably not the best choice for a cost-effectiveness analysis

Risk aversion in the utility function

- Can modify the utility function to formally account for risk-aversion
- This is not a new concept, not even in health economics
 - O'Brien & Schulpher (2000). Medical Care, 38:460-468
 - Graff Zivin (2001). Health Economics, 10(6):499-508
 - Elbasha (2005). Health Economics, 14(5):457-70
 - Baio & Dawid (2011). Stat Meth Med Res, doi: 10.1177/0962280211419832
- Can use different forms, eg
 - $u_{GZ}(b, r, t) = b \frac{r}{2} (b E[B])^2 \qquad b = ke c, \quad r < 0 \quad \text{(Graff Zivin)}$ $- u_{R}(b, r, t) = \frac{1}{r} [1 - \exp(-rb)] \qquad b = ke - c, \quad r > 0 \quad \text{(Raiffa)}$
- In both cases, b is the MNB, while r is a parameter of risk-aversion
 - In the first case: $\downarrow r \Rightarrow$ DM is more risk-averse
 - In the second one: $\uparrow r \Rightarrow \mathsf{DM}$ is more risk-averse

Risk aversion in the utility function

• The quantities we need to investigate for PSA are

$$\begin{aligned} U_{\rm GZ}(\theta^t) &= {\rm E}[u_{\rm GZ}(b;t,r) \mid \theta^t] = \int \left[b - \frac{r}{2}(b - {\rm E}[b])^2\right] p(b \mid \theta^t) \, db \\ &= U(\theta^t) - \frac{r}{2} {\rm Var}[B \mid \theta^t] \end{aligned}$$

and

$$\begin{split} U_{\mathsf{R}}(\theta^{t}) &= \mathsf{E}[u_{\mathsf{R}}(b;t,r) \mid \theta^{t}] = \int \frac{1}{r} \left[1 - \exp(-rb)\right] \, p(b \mid \theta^{t}) \, db \\ &= \frac{1}{r} \left[1 - M_{B \mid \theta^{t}}(-r)\right] \end{split}$$

- Complex mathematical form no longer linear!
- However, can get them as a by-product of MCMC estimation (in a fully Bayesian setting)

Risk aversion in the utility function - comments

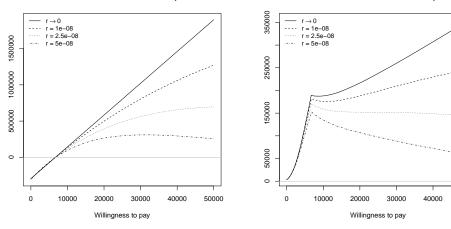
$$U_{\mathsf{GZ}}(heta^t) = U(heta^t) - rac{r}{2}\mathsf{Var}[B \mid heta^t]$$

- Obviously, when r=0, then $U_{\rm GZ}(\theta^t)=U(\theta^t)$
- The additional term (involving *r*) can be considered as some sort of *penalty* — the larger the variability in the MNB, the lower the overall utility
- **Drawback**: need to obtain both the population average and variance of costs and benefits from the statistical model, in order to use GZ

 $U_{\mathsf{R}}(\theta^t) = \frac{1}{r} \left[1 - M_{B|\theta^t}(-r) \right]$

- Not intuitive but can prove that for $r \rightarrow 0$ then retrieves the MNB
- **Advantage**: only need to obtain the population average costs and benefits from the statistical model (that's what we normally have!)
- In addition, the EVPI is appropriately sensitive to the choice of r, but the CEAC is not, using this utility
- Main complication: In any case, it is difficult to determine the scale of r

Example (Raiffa's utility function)



EIB as a function of the risk aversion parameter

EVPI as a function of the risk aversion parameter

Conclusions

- The choice of the utility function is instrumental to the economic evaluation
 - Assuming the MNB implies risk neutrality but we do not always mean that!
- If riskiness is a big deal (eg MenB vaccine?), then it would be appropriate to include a form of risk aversion in the model
 - This would be in contrast to modifying the cost-effectiveness thresholds post-hoc
 - Utility functions including risk aversion will typically modify the break-even point and thus the decision under current evidence
 - Most likely, the results of PSA are affected too
- It is objectively difficult to elicit the level of risk aversion
 - $-\,$ In general we understand the limiting value and the sign of $r\,$
 - But the actual scale (determining how risk averse the decision-maker is) is difficult to determine
 - So what do we do?

Thank you!